Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters

Language
Document Type
Year range
1.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.09.22.21263964

ABSTRACT

BackgroundThe COVID-19 pandemic has led to delays in patients seeking care for life-threatening conditions; however, its impact on treatment patterns for patients with metastatic cancer is unknown. We assessed the COVID-19 pandemics impact on time to treatment initiation (TTI) and treatment selection for patients newly diagnosed with metastatic solid cancer. MethodsWe used an electronic health record-derived longitudinal database curated via technology-enabled abstraction to identify 14,136 US patients newly diagnosed with de novo or recurrent metastatic solid cancer between January 1 and July 31 in 2019 or 2020. Patients received care at [~]280 predominantly community-based oncology practices. Controlled interrupted time series analyses assessed the impact of the COVID-19 pandemic period (April-July 2020) on TTI, defined as the number of days from metastatic diagnosis to receipt of first-line systemic therapy, and use of myelosuppressive therapy. ResultsThe adjusted probability of treatment within 30 days of diagnosis [95% confidence interval] was similar across periods: January-March 2019 41.7% [32.2%, 51.1%]; April-July 2019 42.6% [32.4%, 52.7%]; January-March 2020 44.5% [30.4%, 58.6%]; April-July 2020 46.8% [34.6%, 59.0%]; adjusted percentage-point difference-in-differences 1.4% [-2.7%, 5.5%]. Among 5,962 patients who received first-line systemic therapy, there was no association between the pandemic period and use of myelosuppressive therapy (adjusted percentage-point difference-in-differences 1.6% [-2.6%, 5.8%]). There was no meaningful effect modification by cancer type, race, or age. ConclusionsDespite known pandemic-related delays in surveillance and diagnosis, the COVID-19 pandemic did not impact time to treatment initiation or treatment selection for patients with metastatic solid cancers.


Subject(s)
COVID-19 , Neoplasms
2.
researchsquare; 2021.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-162289.v1

ABSTRACT

Cancer patients have increased morbidity and mortality from Coronavirus Disease 2019 (COVID-19), but the underlying immune mechanisms are unknown. In a cohort of 100 cancer patients hospitalized for COVID-19 at the University of Pennsylvania Health System, we found that patients with hematologic cancers had a significantly higher mortality relative to patients with solid cancers after accounting for confounders including ECOG performance status and active cancer status. We performed flow cytometric and serologic analyses of 106 cancer patients and 113 non-cancer controls from two additional cohorts at Penn and Memorial Sloan Kettering Cancer Center. Patients with solid cancers exhibited an immune phenotype similar to non-cancer patients during acute COVID-19 whereas patients with hematologic cancers had significant impairment of B cells and SARS-CoV-2-specific antibody responses. High dimensional analysis of flow cytometric data revealed 5 distinct immune phenotypes. An immune phenotype characterized by CD8 T cell depletion was associated with a high viral load and the highest mortality of 71%, among all cancer patients. In contrast, despite impaired B cell responses, patients with hematologic cancers and preserved CD8 T cells had a lower viral load and mortality. These data highlight the importance of CD8 T cells in acute COVID-19, particularly in the setting of impaired humoral immunity. Further, depletion of B cells with anti-CD20 therapy resulted in almost complete abrogation of SARS-CoV-2-specific IgG and IgM antibodies, but was not associated with increased mortality compared to other hematologic cancers, when adequate CD8 T cells were present. Finally, higher CD8 T cell counts were associated with improved overall survival in patients with hematologic cancers. Thus, CD8 T cells likely compensate for deficient humoral immunity and influence clinical recovery of COVID-19. These observations have important implications for cancer and COVID-19-directed treatments, immunosuppressive therapies, and for understanding the role of B and T cells in acute COVID-19.


Subject(s)
COVID-19 , Neoplasms
3.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.01.15.21249810

ABSTRACT

Multiple studies have demonstrated the negative impact of cancer care delays during the COVID-19 pandemic, and transmission mitigation techniques are imperative for continued cancer care delivery. To gauge the effectiveness of these measures at the University of Pennsylvania, we conducted a longitudinal study of SARS-CoV-2 antibody seropositivity and seroconversion in patients presenting to infusion centers for cancer-directed therapy between 5/21/2020 and 10/8/2020. Participants completed questionnaires and had up to five serial blood collections. Of 124 enrolled patients, only two (1.6%) had detectable SARS-CoV-2 antibodies on initial blood draw, and no initially seronegative patients developed newly detectable antibodies on subsequent blood draw(s), corresponding to a seroconversion rate of 0% (95%CI 0.0-4.1%) over 14.8 person-years of follow up, with a median of 13 healthcare visits per patient. These results suggest that cancer patients receiving in-person care at a facility with aggressive mitigation efforts have an extremely low likelihood of COVID-19 infection.


Subject(s)
Neoplasms , COVID-19
4.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.08.14.20174961

ABSTRACT

Cancer patients are a vulnerable population postulated to be at higher risk for severe COVID-19 infection. Increased COVID-19 morbidity and mortality in cancer patients may be attributable to age, comorbidities, smoking, healthcare exposure, and cancer treatments, and partially to the cancer itself. Most studies to date have focused on hospitalized patients with severe COVID-19, thereby limiting the generalizability and interpretability of the association between cancer and COVID-19 severity. We compared outcomes of SARS-CoV-2 infection in 323 patients enrolled prior to the pandemic in a large academic biobank (n=67 cancer patients and n=256 non-cancer patients). After adjusting for demographics, smoking status, and comorbidities, a diagnosis of cancer was independently associated with higher odds of hospitalization (OR 2.16, 95% CI 1.12-4.18) and 30-day mortality (OR 5.67, CI 1.49-21.59). These associations were primarily driven by patients with active cancer. These results emphasize the critical importance of preventing SARS-CoV-2 exposure and mitigating infection in cancer patients.


Subject(s)
COVID-19 , Neoplasms
SELECTION OF CITATIONS
SEARCH DETAIL